
1000 mbar = 1 × 105 Pa.

The millibar is a convenient unit for meteorologists because the average atmospheric pressure at sea level on Earth is

1.013 × 105 Pa = 1013 mbar = 1 atm . Using the equations derived when considering pressure at a depth in a fluid,

pressure can also be measured as millimeters or inches of mercury. The pressure at the bottom of a 760-mm column of
mercury at 0 °C in a container where the top part is evacuated is equal to the atmospheric pressure. Thus, 760 mm Hg

is also used in place of 1 atmosphere of pressure. In vacuum physics labs, scientists often use another unit called the torr,
named after Torricelli, who, as we have just seen, invented the mercury manometer for measuring pressure. One torr is equal
to a pressure of 1 mm Hg.

Unit Definition

SI unit: the Pascal 1 Pa = 1 N/m2

English unit: pounds per square inch ( lb/in.2 or psi) 1 psi = 6.895 × 103 Pa

1 atm = 760 mmHg

= 1.013 × 105 Pa
= 14.7 psi
= 29.9 inches of Hg
= 1013 mbar

1 bar = 105 Pa

Other units of pressure

1 torr = 1 mm Hg = 133.3 Pa

Table 14.3 Summary of the Units of Pressure

14.3 | Pascal's Principle and Hydraulics

Learning Objectives

By the end of this section, you will be able to:

• State Pascal’s principle

• Describe applications of Pascal’s principle

• Derive relationships between forces in a hydraulic system

In 1653, the French philosopher and scientist Blaise Pascal published his Treatise on the Equilibrium of Liquids, in which he
discussed principles of static fluids. A static fluid is a fluid that is not in motion. When a fluid is not flowing, we say that the
fluid is in static equilibrium. If the fluid is water, we say it is in hydrostatic equilibrium. For a fluid in static equilibrium,
the net force on any part of the fluid must be zero; otherwise the fluid will start to flow.

Pascal’s observations—since proven experimentally—provide the foundation for hydraulics, one of the most important
developments in modern mechanical technology. Pascal observed that a change in pressure applied to an enclosed fluid is
transmitted undiminished throughout the fluid and to the walls of its container. Because of this, we often know more about
pressure than other physical quantities in fluids. Moreover, Pascal’s principle implies that the total pressure in a fluid is the
sum of the pressures from different sources. A good example is the fluid at a depth depends on the depth of the fluid and
the pressure of the atmosphere.

Pascal’s Principle
Pascal’s principle (also known as Pascal’s law) states that when a change in pressure is applied to an enclosed fluid, it is
transmitted undiminished to all portions of the fluid and to the walls of its container. In an enclosed fluid, since atoms of the
fluid are free to move about, they transmit pressure to all parts of the fluid and to the walls of the container. Any change in
pressure is transmitted undiminished.

Note that this principle does not say that the pressure is the same at all points of a fluid—which is not true, since the pressure
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in a fluid near Earth varies with height. Rather, this principle applies to the change in pressure. Suppose you place some
water in a cylindrical container of height H and cross-sectional area A that has a movable piston of mass m (Figure 14.15).
Adding weight Mg at the top of the piston increases the pressure at the top by Mg/A, since the additional weight also acts
over area A of the lid:

Δptop = Mg
A .

Figure 14.15 Pressure in a fluid changes when the fluid is compressed. (a)
The pressure at the top layer of the fluid is different from pressure at the bottom
layer. (b) The increase in pressure by adding weight to the piston is the same
everywhere, for example, ptop new − ptop = pbottom new − pbottom .

According to Pascal’s principle, the pressure at all points in the water changes by the same amount, Mg/A. Thus, the pressure
at the bottom also increases by Mg/A. The pressure at the bottom of the container is equal to the sum of the atmospheric
pressure, the pressure due the fluid, and the pressure supplied by the mass. The change in pressure at the bottom of the
container due to the mass is

Δpbottom = Mg
A .

Since the pressure changes are the same everywhere in the fluid, we no longer need subscripts to designate the pressure
change for top or bottom:

Δp = Δptop = Δpbottom = Δpeverywhere.

Pascal’s Barrel is a great demonstration of Pascal’s principle. Watch a simulation
(https://openstaxcollege.org/l/21pascalbarrel) of Pascal’s 1646 experiment, in which he demonstrated the
effects of changing pressure in a fluid.

Applications of Pascal’s Principle and Hydraulic Systems
Hydraulic systems are used to operate automotive brakes, hydraulic jacks, and numerous other mechanical systems (Figure
14.16).
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Figure 14.16 A typical hydraulic system with two fluid-filled
cylinders, capped with pistons and connected by a tube called a

hydraulic line. A downward force F→ 1 on the left piston

creates a change in pressure that is transmitted undiminished to
all parts of the enclosed fluid. This results in an upward force

F→ 2 on the right piston that is larger than F→ 1 because the

right piston has a larger surface area.

We can derive a relationship between the forces in this simple hydraulic system by applying Pascal’s principle. Note first
that the two pistons in the system are at the same height, so there is no difference in pressure due to a difference in depth.
The pressure due to F1 acting on area A1 is simply

p1 = F1
A1

, as defined y p = F
A.

According to Pascal’s principle, this pressure is transmitted undiminished throughout the fluid and to all walls of the
container. Thus, a pressure p2 is felt at the other piston that is equal to p1 . That is, p1 = p2. However, since

p2 = F2 /A2, we see that

(14.12)F1
A1

= F2
A2

.

This equation relates the ratios of force to area in any hydraulic system, provided that the pistons are at the same vertical
height and that friction in the system is negligible.

Hydraulic systems can increase or decrease the force applied to them. To make the force larger, the pressure is applied to
a larger area. For example, if a 100-N force is applied to the left cylinder in Figure 14.16 and the right cylinder has an
area five times greater, then the output force is 500 N. Hydraulic systems are analogous to simple levers, but they have the
advantage that pressure can be sent through tortuously curved lines to several places at once.

The hydraulic jack is such a hydraulic system. A hydraulic jack is used to lift heavy loads, such as the ones used by auto
mechanics to raise an automobile. It consists of an incompressible fluid in a U-tube fitted with a movable piston on each
side. One side of the U-tube is narrower than the other. A small force applied over a small area can balance a much larger
force on the other side over a larger area (Figure 14.17).
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Figure 14.17 (a) A hydraulic jack operates by applying forces (F1 , F2) to an incompressible fluid in a U-tube, using

a movable piston (A1, A2) on each side of the tube. (b) Hydraulic jacks are commonly used by car mechanics to lift

vehicles so that repairs and maintenance can be performed. (credit b: modification of work by Jane Whitney)

From Pascal’s principle, it can be shown that the force needed to lift the car is less than the weight of the car:

F1 = A1
A2

F2,

where F1 is the force applied to lift the car, A1 is the cross-sectional area of the smaller piston, A2 is the cross sectional

area of the larger piston, and F2 is the weight of the car.

Example 14.3

Calculating Force on Wheel Cylinders: Pascal Puts on the Brakes

Consider the automobile hydraulic system shown in Figure 14.18. Suppose a force of 100 N is applied to the
brake pedal, which acts on the pedal cylinder (acting as a “master” cylinder) through a lever. A force of 500 N
is exerted on the pedal cylinder. Pressure created in the pedal cylinder is transmitted to the four wheel cylinders.
The pedal cylinder has a diameter of 0.500 cm and each wheel cylinder has a diameter of 2.50 cm. Calculate the
magnitude of the force F2 created at each of the wheel cylinders.
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Figure 14.18 Hydraulic brakes use Pascal’s principle. The driver pushes the brake pedal, exerting a force
that is increased by the simple lever and again by the hydraulic system. Each of the identical wheel cylinders
receives the same pressure and, therefore, creates the same force output F2 . The circular cross-sectional areas

of the pedal and wheel cylinders are represented by A1 and A2 , respectively.

Strategy

We are given the force F1 applied to the pedal cylinder. The cross-sectional areas A1 and A2 can be calculated

from their given diameters. Then we can use the following relationship to find the force F2 :

F1
A1

= F2
A2

.

Manipulate this algebraically to get F2 on one side and substitute known values.

Solution

Pascal’s principle applied to hydraulic systems is given by
F1
A1

= F2
A2

:

F2 = A2
A1

F1 =
πr2

2

πr1
2F1

= (1.25 cm)2

(0.250 cm)2 × 500 N = 1.25 × 104 N.

706 Chapter 14 | Fluid Mechanics

This OpenStax book is available for free at http://cnx.org/content/col12031/1.10



14.3

Significance

This value is the force exerted by each of the four wheel cylinders. Note that we can add as many wheel cylinders

as we wish. If each has a 2.50-cm diameter, each will exert 1.25 × 104 N. A simple hydraulic system, as an

example of a simple machine, can increase force but cannot do more work than is done on it. Work is force times
distance moved, and the wheel cylinder moves through a smaller distance than the pedal cylinder. Furthermore,
the more wheels added, the smaller the distance each one moves. Many hydraulic systems—such as power brakes
and those in bulldozers—have a motorized pump that actually does most of the work in the system.

Check Your Understanding Would a hydraulic press still operate properly if a gas is used instead of a
liquid?

14.4 | Archimedes’ Principle and Buoyancy

Learning Objectives

By the end of this section, you will be able to:

• Define buoyant force

• State Archimedes’ principle

• Describe the relationship between density and Archimedes’ principle

When placed in a fluid, some objects float due to a buoyant force. Where does this buoyant force come from? Why is it that
some things float and others do not? Do objects that sink get any support at all from the fluid? Is your body buoyed by the
atmosphere, or are only helium balloons affected (Figure 14.19)?

Figure 14.19 (a) Even objects that sink, like this anchor, are partly supported by water when submerged. (b) Submarines have
adjustable density (ballast tanks) so that they may float or sink as desired. (c) Helium-filled balloons tug upward on their strings,
demonstrating air’s buoyant effect. (credit b: modification of work by Allied Navy; credit c: modification of work by
“Crystl”/Flickr)

Answers to all these questions, and many others, are based on the fact that pressure increases with depth in a fluid. This
means that the upward force on the bottom of an object in a fluid is greater than the downward force on top of the object.
There is an upward force, or buoyant force, on any object in any fluid (Figure 14.20). If the buoyant force is greater than
the object’s weight, the object rises to the surface and floats. If the buoyant force is less than the object’s weight, the object
sinks. If the buoyant force equals the object’s weight, the object can remain suspended at its present depth. The buoyant
force is always present, whether the object floats, sinks, or is suspended in a fluid.
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